`
kmplayer
  • 浏览: 498267 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

剖析浮点数

阅读更多
[转载]http://blog.csdn.net/masefee/archive/2010/01/30/5272554.aspx

    这里历史和发展就不说了,直接从IEEE浮点标准说起。
    在 IEEE 标准中,浮点数是将特定长度的连续字节的所有二进制位分割为特定宽度的符号域,指数域和尾数域三个域,其中保存的值分别用于表示给定二进制浮点数中的符号,指数和尾数。这样,通过尾数和可以调节的指数(所以称为"浮点")就可以表达给定的数值了。
具体的格式:

             符号位      阶码     尾数    长度
float             1         8       23      32
double          1        11       52      64


注:浮点数在32位机子上有两种精度,float占32位,double占64位。
    我们应该不要特殊看到浮点数的内存存储形式,它跟整数没有什么区别,只是在这4字节或者8字节里有3个区域,整数有符号只有符号位及后面的数值。
那么,我们先来看32位浮点数 的换算:

1. 从浮点数到16进制数

float  var = 5.2f;
就这个浮点数,我们一步一步将它转换为16进制数。

    首先,整数部分5,二进制表示为:0101。
    其次,小数部分0.2,转换为二进制的计算方法,那么就是依次乘以2,取整数部分作为二进制数,取小数部分继续乘以2,一直算到小数结果为0为止。那么对0.2进行计算:

0.2*2 = 0.4 * 2 = 0.8 * 2 = 1.6(0.6) * 2 = 1.2(0.2)*2 = 0.4 * 2 = 0.8 * 2 = 1.6(0.6) * 2 = 1.2 ... ...
00110011... ...

0.2的二进制就计算出来了,结果就为:0.00110011... ...
    这里的省略号是你没有办法计算完。二进制序列无限循环,没有到达结果为0的那一天。那么此时我们该怎么办?
    这里就得取到一定的二进制位数后停止计算,然后舍入。我们知道,float是32位,后面尾数的长度只能最大23位。因此,计算结束的时候,整数部分加上小数部分的二进制一共23位二进制。
因此5.2 的二进制表示就为:
101.00110011001100110011

一共23位。

此时,使用科学计数法表示,结果为:
1.0100110011001100110011 * 2^2


    由于我们规定,使用二进制科学计数法后,小数点左边必须为1,这样这个1就不用存储了,我们在从16进制数换算到浮点数的时候加上这个1就是了,省略到这个1的目的是为了后面的小数部分能够多表示一位,精度就更高一些了哟。
那么省略到小数点前面的1后的结果为:
.01001100110011001100110 * 2^2

    这里后面蓝色的0就是补上的,这里不是随便补的一个0,而是0.2的二进制在这一位上本来就应该为0,如果该为1,我们就得补上一个1.
    但是,在对阶或向右规格化时,尾数要向右移位,这样被右移的尾数的低位部分会被丢掉,从而造成一定的误差,因此要进行舍入处理。 常用的舍入方法有两种:一种是“0舍1入”法,即如果右移时被丢掉数位的最高位为0则舍去,为1则将尾数的末位加“1”,另一种是“恒置1”,即只要数位被移掉,就在尾数的末位恒置“1”。

举个例子:
123.456的二进制到23位时:111 1011.0111 0100 1011 1100 01...

后面还有依次为01...等低位,由于最高位的1会被隐藏,向后扩展一位如果不做舍入操作则结果为:
1.11 1011 0111 0100 1011 1100 0 * 2^6
但是经过舍入操作后,由于被舍掉的位的最高位是1,或者“恒置1”法,最后面的0都应该是1。因此最终就应该是:
1.11 1011 0111 0100 1011 1100 1 * 2^6
在这里需要说明,不管是恒置1,还是0舍1入法,其根本都是为了减小误差。

    5.2的尾数在这里就计算好了,就是: 01001100110011001100110
    再来看阶数,这里我们知道是2^2次方,那么指数就是2。同样IEEE标准又规定了,因为中间的阶码在float中是占8位,而这个阶码又是有符号的(意思就是说,可以有2^-2次方的形式)。注意这里偏置量的概念:
    float 类型的偏置量 Bias = 2^(k-1) -1 = 2^(8-1) -1 = 127 ,但还要补上刚才因为左移作为小数部分的 2 位(也就是科学技术法的指数),因此阶码为 127 + 2=129 ,就是 IEEE 浮点数表示标准:
V = (-1)^s × M × 2^(e - Bias)
s:符号位  M:尾数 e:阶码

这里的阶码就是129,二进制就是:10000001
因此,拼接起来后:


还原:
这里因为之前我们都知道有个固定的1给省略了,因此这里要给加上去。加上去之后:
1 010 0110 0110 0110 0110 011 0
这里是24位,我们先不管,小数点添进去:
1 . 010 0110 0110 0110 0110 011 0 * 2^2
然后将科学计数法变换成普通的二进制小数:
1 01 . 0 0110 0110 0110 0110 011 0
到这里,就真正可以把整数部分换成十进制了:
1 01 . 0 0110 0110 0110 0110 011 0
   5.  xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
我们知道了,整数部分是5,后面的小数部分再进行逆运算:
0 .    0 0110 0110 0110 0110 011 0 =
0 + 0*2^-1 + 0*2^-2 + 1*2^-3 + 1*2^-4 + 0*2^-5 + 0*2^-6 + 1*2^-7 + ... ... + 0*2^-21 这样一个式子,我们算出结果来,放在浮点数里:
5.1999998。
因此我们可以看到精度已经有损失了。

64位浮点数 的换算:
    这里就不再具体说明怎么换算的了,只需要提到2个地方:
    一是,中间的阶码在double中占有11位,因此阶码就不是+127了,而是加上1023,因为11位能表示的最大无符号数是2047,因此有符号范围[-1024, 1023]。
    二是,尾数是52位,因此精度更高,能表示的数也就越大。我们在换算5.2的时候,后面的小数二进制+前面的5的二进制再省略一位后的总位数要填满52位。

给出一段验证代码:
#include <stdio.h>
#include <string.h>

int main()
{
    union
    {
        float f;
        int i;
    }u;
    u.f = 5.2f;
    printf("%.7f\n", u.f); //5.1999998一旦放入,精度已经发生了变化
    printf("%x\n", u.i);

    union
    {
        float f;
        int i;
    }v;
    v.i = 0x40A66666;
    printf("%.7f\n", v.f);
    printf("%x\n", v.i);
    return 0;
}


  • 大小: 24.6 KB
分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics